Non-invasive brain stimulation in supporting motor abilities in stroke patients and healthy people
Location: Room 101 - 11/3/23, 12:00 PM - 11/3/23, 12:30 PM (Europe/Amsterdam) (30 minutes)

Non-invasive brain stimulation in supporting motor abilities in stroke patients and healthy people
Prof. Dr. Jitka Veldema

Jitka Veldema obtained a MA and a PhD in sport science from the Charles University in Prague, Czech Republic (Prof. Ing. Stanislav Otáhal CSc.). She was a visiting researcher in the department of sport science at the Humboldt University of Berlin, Germany (Prof. Dr. Günter Tidow), before joining the Neurological Clinic in Kipfenberg, Germany (Prof. Dr.med. Dennis Alexander Nowak). From there, she continued her career as a postdoctoral fellow at the Faculty of Psychology, Education and Sport Science, University of Regensburg, Germany (Prof. Dr. Petra Jansen), and Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Germany (Prof. Dr.med. Alireza Gharabaghi). Jitka Veldema is since 2022 a Junior Professor in the Department of Sport Science, Bielefeld University, Germany. She investigated repetitive transcranial magnetic stimulation and direct current stimulation in stroke hand motor rehabilitation for many years. Currently, she focusses on the application of non-invasive brain stimulation methods in the modulation of balance and gait in both healthy and disabled people. She also tested the potential of these methods in supporting sport performance.sport students. While spinal tDCS supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only


This talk focuses on non-invasive brain stimulation in the modulation of motor performance in healthy people and stroke patients. I present four placebo-controlled interventional studies and one longitudinal observational study performed in the last few years. (1) A single session of 1 Hz rTMS (900 pulses, 100% of rMT) over the contralesional dorsal premotor cortex improved hand function in a stroke cohort. (2) Fifteen sessions of 1 Hz rTMS (900 pulses, 100% of rMT) over the contralesional M1 improved the affected hand after a dominant hemispheric stroke but not after a non-dominant hemispheric injury. (3) The size and the location of the contralesional cortical hand motor representation and its changes over six weeks correlates with hand motor disability/recovery in stroke patients. (4) 1 mA tDCS (20 minutes) over the dominant M1 improved basketball shooting precision, dribbling and agility in sport students. (5) 1.5 mA tDCS (20 minutes) applied over (a) M1 (b) cerebellum and (c) spinal cord supported balance ability in sport students. While spinal tDCS supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only.